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ABSTRACT

This paper contains two new characterizations of generators of

analytic semigroups of linear operators in a Banach space. These charac-

terizations do not require use of complex rn.mthers. One is used to give a

new proof that strongly elliptic second order partial differential oper-

ators generate analytic semigroups in L~, 1 < p < ~~, while the sufficient

condition in the other characterization is meaningful in the case of non-

- j linear operators.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with the study of initial-value problems.

Some initial-value problems have a “regularizing” property in that no

matter how rough the initial value is, the solution at later times is

very smooth. For example, this phenomena occurs for the heat equation

and not for the wave equation. This paper offers three new criteria

which, if satisfied by a linear initial-value problem, guarantee that

the regularizing property holds. These criteria seem closer to admitting

nonlinear generalizations than the criteria used to date, and interest in

the nonlinear case partly motivates this work.

*

I
The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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REMARKS ON GENERATORS OF ANALYTIC SEMIGROUP S

N. G. Crandall, A. Pazy, L. Tartar

SECTION 1. INTRODUCTION.

Let X be a Banach space with norm ~
, A be a densely d~fined linear operator

in X and consider the initial value problem

fu ’ 4 Au = 0
( ) lu (O) ~~x

• I We recall some classical results concerning this initial value problem in a form which

is convenient for what follows.

We denote by K (A) the set of all scalars A for which I + AA has a bounded

everywhere defined inverse, where I denotes the identity mapping on X. At this

3, point we do not specify the scalar field; it may be either the real or the complex

field. For A € K (A) we set

(1) = (I + AA)~~

The Hille-Yosida-Phillips theory implies that if K (A) D (O,X
0
) for some A

0 
> 0 and

either of the eguivalent conditions

(2) ~ M > 0, s~ C E such that lI~~lI < M(1 — XW) n for 0 < A < A 0 and n =

or

(2)’ R N > 0 such that IIJ~’IL < M for 0 < A < nA < 1 and n = 1,2 

holds, then for each x e x

(3) S(jx = u r n  x
t/n

exists uniformly for t in bounded subsets of ~O,’°). (By convention J
0 

will be

the identity on X rather than the identity on the d~ uain D(A) of 1~.) Noreovi r,

if x e  D(A), u(t) = S(t)x is a classical solution of (IsJP) on I0 ,~’), and S is

a strongly continuous semigroup on X. Finally —A is the inf~~ i t ~~ imel generator

of S and (2) or (2)’ are equivalent to —A being an i n f j  ~~~~~~~ ‘ i o r ~ tor of a

strongly continuous sernigroup S.

Sponsored by the United States Army under Contract No. DAAG29- 1~~— (~- O O 2 4  ~rnd t~~t
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We are interested in the possibility of differentiating S(t)x for x e x .

Everywhere in this section we assume K ( A )  D (0,A
0
) and either (2) or (2)’ and so we

have also (3). The strong condition t -
~ S(t)x € C~ ([O,°~) ; X) for all x C X is

equivalent to D(A) = X which is of no interest here. The weaker condition that

t -
~ S(t)x e C1((0,°~) ; X) for each x C X may be restated as either

t -
~~ S ( t ) x  C C ((O,°’) ; X) for all X e  X or S(t)x C D(A) for t > 0. Semigroups

with these last properties are called C’~
’ semigroups and their infinitesimal generators

are characterized in [81. The general class of C semigroups has not played a strong

role in the applications of the theory so far. However, a more restricted class has

enjoyed a wide range of applications, most notably to semilinear and quasilinear

• parabolic problems (see e.g. [7), [12), (61). These are the holomorphic or analytic

semigroups, and are the main interest of this note.

There is a variety of ways to define the concept of an analytic semigroup. If

the underlying space is complex, it suffices to require that t -~ S(t) extends

holomorphically from t > 0 to the sector {t ~ 0 argt~ < 01 of the complex plane

for some 0 > 0 and that for every x c X, S ( z ) x -
~ x as z + 0 in this sector. If

X is a real Banach space, one can complexify and ask that the complexified S be

holomorphic in the above sense. This last idea seems unnatural to us when the appli-

cation one has in mind is to, say , a semilinear problem u’ + Au + f (u )  = 0, u(O) =

where f does not have a natural complexification .

A way to characterize analytic semigroups which ignores the scalar field in use is

to require

(4) There is a dense subset D of X and C > 0 such that

I I AS ( t ) x !t  < Ct 1
~jxj~ for 0 < t < 1, x C D

Since AS(t) is closed (4) implies that AS(t) is everywhere defined for 0 < t and

IA S( t ) It < Ct~
1 for 0 < t < 1.

In so far as we know, the published characterizations of the infinitesimal

generators of analytic semigroups are all in terms of the complex resolvent of A.

I:
A ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. •



For example, in terms of ((A) and 
~A’ 

S is analytic if and only if

I~r,M > 0 such that K (A) 3 0 {A A C E, ReA > 0 and I A 1  < r~(5) •~ r

I~and IJ
~ I < N for A € 0

Here X has been complexified if it was originally a real Banach space . The character-

ization (6) is easily seen to be equivalent to the usua l characterization in terms of

the resolvent of —A (see e.g. (9) , (14)) via the relation

= ~ + AA) 1 
= A 1(A 1 + A) 1

Some observations concerning verification of (2) and (2)’ in applications are in

order. First (2)’ has been stated only for later convenience. Secondly, if there is

• 
. 

an equivalent none for which GA ” 
< (1 — AAa )~~ for 0 ~ A < A

0
, th en (2 )

holds. This is what is checked in practice. The only cases we know of which (2) haS

been established without exhibiting an equivalent norm for which M = 1 works, are
I .

those in which (5) is what is checked. Complex analytic arguments can be used to

verify (2) when (5) holds, or else one shows via complex analytic arguments that if (5)

holds, —A generates a strongly continuous semigroup S and then (2)  follows from the

necessity of the Hille—Yosida—Phillips conditions.

• We present here some simple characterizations of the infinitesimal generators of

semigroups sat isfying (4) which do not refer to complex numbers. These are theorems

1 and 2 in the next section. Led by these considerations we have found a simple proof

of the fact that second order scalar elliptic operators generate analytic semiyroups

in iP spaces. This is presented in section 3, where there are also further remarks

concerning this problem.

Our original motivation in this inquiry was a desire to understand “regularizing

effects” in known linear problems in such a way as to shed some new lig h t  on nonlinear

problems. The contribution of this note in this direction is unfortunately rather

, aiall , but it may help to bring these concerns into focus.

—3—
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SECTION 2. THE ABSTRACT RESULTS.

Our first characterization of the generator of an analytic semigroup is:

Theorem 1. Let —A be the infinitesimal generator of a strongly continuous semigroup

S(t)  on X . Then S( t )  is an analytic semigroup if m d  only if for some C, A 0 > ~

• (2.1) j IAJ~ I < -
~~~ for 0 < A < A

0
, nA < 1 and n = 1, 2 

Proo f: Since —A is the infinitesimal generator of S, ( 2 ) ’  and (3) hold .  Assuming

(2. 1), if x I D(A) then

(2. 2) lf~~~,~XII = IIJ~,~AX~I ~ ~~I x l l  for 0 < t < 1 and n large enough.

Using (3) and the fact that A is closed we conclude that

IIAS(t )x II = I I S ( t ) Ax iI  ~ ~ llxII for x € D (A )

• Thus (4) holds and S is analytic.

c For the converse, if S(t) is analytic there are constants c
1 

> 0 and C P

such that

( 2.3) ~IAS( t ) I~ < C
1t~~e 1 for t > 0

This is a simple consequence of (4) and the growth condition IIS(t) II < Me~
At 

which 
*

follows from (2). Moreover, for any strongly continuous semigroup we have (see e.g.

(91, (141)

(2.4) 
~A 

= A~~ f e t’AS(t)dt

where the integral converges in the strong operator topology if A > 0 and Ac < 1.

A simple induction establishes that

(2.5) ~fl+l = A~~ f ~~ ~~e_t~~S(t )dt

Acting on both sides of (2.5) with A and using (2.3) we find

(2.6) ~IM~ ’II~ 
C~~~~ 

(
t f l l  

~-je
+~~~

t
dt = 

~~~~ 
‘

and (2 .1 )  follows.

—4—
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Remarks: T. Kato informed us that he had previously observed the result  of theorem 1.

• Our formulation of it arose from consideration of nonlinear problems. The condition

(5) is not meaningful for nonlinear A , while (2.1) extends easily to this case. In

fact one can verify the appropriate version of (2.1) if A = 3P is the subdifferential

of a lower semicontinuous convex functional on a Hu bert space (see Appendix 1). In

other nonlinear problems this criterion appears to be too difficult to check (in a way

analogous to (2) with N > 1).

The next result follows a different track. Given an operator A in X we form

the operator ~2 in Xxx corresponding to the 2x2 matrix

(2.7)

that is Q’(x,y) = (Ax ,Ax + Ay) for ( x ,y )  C D(A)  x 0(A)

Theorem 2. Let A be a linear densely defined operator in X. Then -A is the

• - infinitesimal generator of an analytic semigroup on X if and only if -O is the

infinitesimal generator of a strongly continuous seinigroup on Xxx.

4 proof: We indicate two proofs. For the first one observe that K (A~ = ~ (0) and with

= (I + AAY 1, TA = ( I  + A0)~~ we have •

~i -  
0

(2.8) T~~= for A € K (A) , n = 1, 2 
• J n+1 n_nAAJ

A ~A

k Thus C satisfies ( 2 ) ’  if and only if and nAAJ~~~ remair -~n i f o r m ~ y ho~a d  for

small A > 0 and nA < 1, n = 1,2 Theorem 2 thus follew- from 1 ’  r~ r’i

The second proof arises from the idea behind the theorem. ~ is I ~;ht~~ longer

but we have other uses for it.) Assume that u solves u + = 0 • -~d ~ ,n- 1 -r the

equation satisfied by the pair (u,v) where v — tu’. Since

= tu” + u = - ( tAu ’ + Au) = — (Av + Au). we have:

- (u,v)’ + C(u,v) • 0 • IL
4

This translates into the expected relationship

(2.9) 3(t)(x,y) (S(t)x,S(t)y — t A S ( t ) x )

—5—
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between the sernigroup generated by -c7 and the semigroup S generated by —A

(if these exist). Given a strongly continuous S generated by —C, (2.9) defines S

by setting S(t)y equal to the second component of S(t)(0,y). It is easy to check

• that S is analytic (since tAS(t) will have to be bounded) and is generated by —A.

Similarly if S is analytic and generated by -A then S is strongly continuous and

generated by -a. We verify only the strong continuity lim S(t)(x,y) = (x,y). For
t-’O+

this it suffices to have lim tAS(t)x = 0 for all x € X . However
t-*O+

u r n  tAS (t )x  = lin t S ( t ) Ax  = 0 for x C D(A)  and tAS(t)  is uniformly bounded for
t+O+

0 < t < 1, whence the result. U

Remark: It is obvious that tCS(t) is bounded for 0 K t < 1 if S is analytic.

Thus -C generates a stronaly continuous semigroup only if it generates an analytic

semi group.

Since the proof of Theorem 2 was simple, we cannot expect this result to sub-

stantially reduce the task of showing particular generators generate analytic semigroups.

However, Theorem 2 does suggest the sufficient condition below, which is employed in the

ne,:t section.

• Let F XXX -‘- P be continuously differentiable. We write F(x,y) for

( x ,y )  e XXX and F
~
(x.y )

~ 
F
y
(X~Y) for the gradient maps F ,F : XXX -* X~’ obtained

by differentiating x + F(x,y) and y -
~ F(x,y) respectively. The notation (x *,x)

means the value of x* € X~ at x C X.

Proposition 3: Let —A be the infinitesimal generator of a strongly continuous semi—

group S on X. Let F : XXX -* ]R be continuously differentiable and satisfy

There are positive constants a0
,a1

,5 such that

(2.10)
a0~ (x

,y) 11° < F(x,y) ~ a~~j~ (x,y) ~ for (x,y) € XXX

(2.11) <F (x,y) + F (x,y),Ax) + (F
y

(X~ Y)~~AY > > 0 for (x,y) e 0(A) X D(A)

then S is analytic.

-6-
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Remark: We have not specified a norm on XXX , but (2.10) is invariant under a change

of norm so this is not important.

Proof: 5 , as given by (2.9), is a seinigroup on D(A2) X D(A) and S(t) (x,y) is

continuously differentiable in t for (x,y) € 0(A2) X D(A). Moreover, by the chain

rule and (2.11),

~~~
F(S (t)(x,y ))j

~~ o 
= _ ( F

~~
(x ,y) + F (x , y ) , Ax) ~~(F

y
(X~ Y)~~AY > ~ 0

for (x,y) € D(A2) X D(A). By the semigroup property of S, ~~~F(S(t)(x,y)) < 0

for t > 0 and by (2.10)

(2.12) a~~~ IIS(t) (x,y) 
<F(S(t)(x,y))~~~ <F (x ,y)l/U < a~~~I I (x ,y ) j I

and S( t)  is bounded (uniformly in t) on 0(A 2 ) X 0(A) . Thus j j t A S ( t )  is bounded

for t > 0 and the proof is complete. U

Remark: The technical conditions of Proposition 3 can be perturbed in many ways to

obtain similar results. Our main interest here is in the general idea that it suffices

j to exhibit a functional (satisfying some conditions) which decreases along trajectories

of S in order to know that S is analytic.

J
L

I

—7— 
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SECTION 3. AN APPLICATION.

It is known that strongly elliptic operators generate analytic semigroups in L~

1 < p < = and in spaces of continuous functions. The case of elliptic operators in

L~ (0) ,  1 < p ~ for 0 bounded with general boundary conditions is due to S. Agmon

[1], (see also (6], [101). In the continuous function spaces with 0 bounded or

• unbounded and with Dirichlet boundary conditions the results are due to H. Stewart [13).

• These results were obtain~d by verifying the complex resolvent estimates required using

the method of S. Aginon (1). T. Kato (personal communication) and independently,

F. Massey have observed that analyticity in L1 can be obtained via duality with the

continuous function case.

In so far as we are aware , higher order strongly elliptic operators are known to

generate strongly continuous semigroups in L~ , 1 < p < , p ~ 2 only by the complex

resolvent estimates which show that they generate analytic semigroups.

For second order elliptic operators one can give a direct argument based on

multiplication by appropriate functions, that shows that they satisfy the complex

resolvent estimates required for the operator to generate an analytic semigroup in

rY, i < p ~ , see ( 12) .  In this case however , one does not need these results to

show that second order elliptic operators generate strongly continuous semigroups,

since this can be shown in a simple~r way (see e. g. [5 ] ) .  One is then natura l ly  inter-

ested in a direct proof of the analyticity of those semigroups which does not depend

on the complex resolvent estimates. This is our next topic.

Let 0 be a bounded domain in with a smooth boundary 30. Let A be a

symmetric second order differential operator formally given by

(3. 1) A = — -a--- (a. (x) -a---- .~~
• • 3x . ij 3x.i,j=1 1. 3

We assume that the coefficients a. (x) are real, continuously differentiable in II

and that A is uniformly elliptic, i.e. there are constants C ,C > 0 such that

N 

0 1

(3 .2)  C1R1 2 
> ~ ~~~~~~~ > C

0k12 for x € c~, ~ ~ ~
N

i , 3=l

—8—
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We consider A as an operator in L~~(d) , 1 ~ p < , with  domain

D ( A )  = {u : u ~ W
2’
~~(~~) fl W~~’~~ (~~) }

where W
m.P(I~) is the usual Sobolev space of distributions ~nici-~ h u e  in der ivat ives

in IY (0) and W1’~~(0) is the closure of C
0
(0) in

It is not di f f i c u lt to see that —A generates a strongly continuous semigroup of

contraction 5 (t) in L~ (i~) for I. < p < (see e.g. [5]). ‘ill show using

Proposition 3, that 5 (t) is an analytic semigroup for 2 < p (and then , for

example, by duality also for 1 < p < 2).

Let F : p2 - ‘-p be such that

(3.3) (u,v) -÷ F ( u ,v) = f F(u(x),v(x)dx
0

is continuously differentiable on L~~( Q )  x IY(0). Then for u,v e 0 (A )  we have

< F (u , v) + F (u , v ) , AU ) + <F (u ,v ) , Av> =u V v

• = - f ( ( F  (u , v) + F (u,vflAu + F (u ,v ) A v dx
U v V0

where the dual of L~ (0) is taken as ~~~~~~~ (0) and F , F denote the derivatives

‘A of F with respect to its f i r s t  and second arguments respectively. Since

u,v € W~’~~(0) ~ W~
’
~~O~) we can integrate the last equality by parts (provided that F

has enough properties to justify this)  and use ( 3 . 2 )  to obtain

( P  (u ,v) + F (u , v ) , A u)  + (F (u, v ) , Av ) =
U V V

= f a . . ( x )  (F (u , v) + F (u , v ) )- - 13 uu vu 3x . 3x .i , j= l 1

( 3 . 4 )  + (2F (u,v) + F (u,v)) ~
-

~~
— 

~~
-
~~

— + F (u ,v) ~-~~ -- Y ! dx >
uv vv ~x . 3x. vv ~x . x • —

1 J 1

~ [c0{ 
(F + F

vu
) 

2 
+ 

2

} 
-

N 2 N 2 1/2
- C

1I 2 F  + F I [ ~~ ~~~~ i=l ~~~~ 
) ]dx

provided that F + F > 0 and F ~uu vu-

-9-
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• The integrand of the right hand side of (3. ~) will be nonnegative for all u,v e 0(A)

if the following conditions are satisfied 
- 

-

• (i) F > 0
‘TV-

• (3.5) (ii) F + F > 0
uu vu—

(iii) 4R
2
F
2 

+ 4(R2 — l )~ F + R2
F2 

< 4F F , R =
uv vv vv — uu vv C

0

Th complete our proof that S (t) is analytic we have to find a function F such that

F in (3.3) is continuously differentiable, the above calculations are valid , (3•5) holds

and (2.10) holds with X = L~~(0).

To this end, assume that F is positive homogeneous of degree p > 2 and write

(3.5) for F
~
(u,v) = F(u,Av) where A > 0. The conditions (3.5) (i), (ii) are

invariant under this change of variables while (3.5) (iii) becomes

4X 2R2F2 + 4 ( R
2
— l )A

3F F + R2 A
4

F
2 

< 4X 2
F Fuv uv vv v v -  uu vv

Dividing by A 2, letting A -‘- 0 and recalling the homogeneity, we see that if suffices

to find F such that *

(3.6) 4R2F2 
K 4F F for u2 + v2 

= 1u v —  uu vv

and then (3.5) (iii) will hold for FA if A > 0 is sufficiently small. We choose

(3.7) F(u,v) = (c*~ul~ + ct Iv I~ + ju + vj~~) , a > 0

For p > 2, F and F have the regularity required above while a can be chosen so

large that (3.6) holds. Thus S is analytic for p > 2.

Remarks:

1) For the special case of the Laplacian, one can compute a constant C in (4)

explicitly. Using the function

—l 2 2 p/2F(u,v) = p (u + Xv )

• with X < min(4 ( p — l ) ,  4 (p — l) 1) one can check that the conditions (3.5) are satisfied

and one finds - 
-

(3.8) jj ~~S ( t )  II 
~ 

(2i~ r) ~ for 1 < p < 2

-10-
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and

I lI~S~ t < f r  2 p =

r 2) The above proof obviously generalizes in many ways. For example on~ can handle

• 
~,

- various boundary conditions and lower order terms . However, more interesting questions

are : Can something similar be done for p = 1? For higher order operators? Or in the

abstract setting of (11, Thin. X , 43)? This last reference is to an abstract theorem

• (which applies to our example) which is proved roughly by interpolating between strongly

continuous in L1 and analytic in L2 by complex methods. Our proof is similar to

• that of (21 for p 2.

Finally we observe that the F we constructed in this case is essentially a norm

(F1”~ is a norm) , but we did not have to verify this. Moreover, it is possible to give

reasonable F’s which do not correspond to norms.

1~i
~j~!:-, 

-

• HI!
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APPENDIX , A NONLINEAR RELATED RESULT.

Let H be a real Hu bert space and let A be a maximal monotone operator in H.

For the definition and elementary properties of maximal monotone operators used in this

section see e.g. (3). It is well known that a maximal monotone operator A in H

generates a semigroup S(t )  of nonexpansive mappings on 0(A). We say that S(t) has

the regularizing property if S(t)D(A) C D(A) for t > 0. (This corresponds to S(t)

being a C semigroup in the linear case). For maximal monotone operators

= (I + AA) 1 is a nonexpansive mapping of H into itself. In this appendix we

will prove that if A = 3’~ is the subdifferential of a convex lower semicontinuous

function ~ then

(A .l)  ~IA
0J~xjj < -

~~~ for A > 0, nA < 1 and n = 1,2,...

where A°x is, as usual, the element of minimum norm in the set Ax. Thus if A =

it satisfies the nonlinear analogue of the condition of Theorem 1, and we therefore

expect that it generates a semigroup with the regularizing property. That this is

indeed the case follows easily from (A.l) together with the nonlinear analogue of (3).
*

(A. l )  is a straightforward consequence of the following more general proposition

which is a modification of a result of (4 ] .

Proposition: Let ‘p be a convex lower semicontinuous function on H and let A =

be the subdifferential of ‘p. For every x0 
e H and (A) CIR

+ 
let

(A .2 )  x = J x n = 1, 2 , . . .n A n—i
n

Then for every tu ,wlI € A

(A.3) ~IA °x~It 2
~ k i  

A k)
2 j 1x 0

_ u f I
2 - 2 (~~ A k ) ’(w ,x - u) .

Proof:

(A.2 )  can be also written as 
-

(A . 2 ) ’  X n_ l  X,~ + X~ Y~ y~ € AX

I
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We denote by AX the element y C Ax which is defined by (A.2)’ . From the

monotonicity of A it follows that

0 < (Ax
k l  

— Ax~ , Xk l  
— x

k
) = A

k~~~k_ l — A k . 1
~~k

)

and therefore

(A.4) lj Ax k
jj < j jAx ~ 

~
j j for k = 2,3,...

Denoting

n
0 = 0 ,  o = A

4 0 n 
k=l k

we have for every u C 0(A)

Ik~1 - u 11 2 
= IJX k - uj I

2 + 2A k
(Ax k ,xk 

- u) + A~ jA ~~ j j 2 >

(A . 5) > j j x ~ - ulj
2 + 2A~~(~~(x~) - ‘p(u)) + A

~
jIA xk jI

2

— > IIX~ — uj j
2 + 2A

k
o

k l h j A x k h j + 2o~~~(x~ ) - 2ok l~
(x
k l

) — 2A ,’p ( u )  
~ 

A
~~Ij A xk l j

2

‘ where the first equality follows from (A.2)’ , the first inequelity followr from the

definition of the subdifferential and the second inequality tol1ow-~ from

— o~~ (x~) + A~~ (x~) = ~~~~~~~~~~~ — ~~(x~ )) > 
~ lA k j j A xk j !

2

Summing (A.5) from k = 1 to k = n and using (A.3) we find

jx
~ 

- uj f
2 > j X  - ujj

2 + 
k l  

(2A
k
ok_l + A~ )jIA x~~f

2 + 2 c ( ~~( x )  - ~~~u ) )  >

> Ix~ 
— uj j 2 + o2jjAX j j 2 + 20 (Au,x — u)

and (A.3) follows at once.

- 
- To deduce (A.l) from (A.3) choose u = X and A

k 
= A for Ic = 1, 2 , . . .  in (A.3).

Then

jx - x j j
(A .6) j j A 0x jj < jAx II ~ 0 n

n - n - nA

If nA < 1 then jjx0 
— x j j  < C. Indeed, for every u C 0(A )  w’~ ~~ ye

jjx0 
— x~ j ~ 2jx 0— u + j~u — J~ uj j  < 2jjx0

— u~ + ~~~ A - ~

and (A.l) follows.
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Remark: If we assume that F = A 10 ~ ~ and denote by P the projection on F we

obtain by choosing u Px
0 in (A.3)

(A.7) Ax 
k~l 

A
k)~~

dist(x
o
,F)

which is slightly better (having a better constant) then the result obtained in (4].

*
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